3.336 \(\int \frac{1}{x^3 (d+e x^2) \sqrt{a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=218 \[ \frac{b \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{4 a^{3/2} d}+\frac{e^2 \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 d^2 \sqrt{a e^2-b d e+c d^2}}+\frac{e \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 \sqrt{a} d^2}-\frac{\sqrt{a+b x^2+c x^4}}{2 a d x^2} \]

[Out]

-Sqrt[a + b*x^2 + c*x^4]/(2*a*d*x^2) + (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*a^(3/
2)*d) + (e*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*Sqrt[a]*d^2) + (e^2*ArcTanh[(b*d - 2
*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2*Sqrt[c*d^2 - b*d*e
+ a*e^2])

________________________________________________________________________________________

Rubi [A]  time = 0.266096, antiderivative size = 218, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {1251, 960, 730, 724, 206} \[ \frac{b \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{4 a^{3/2} d}+\frac{e^2 \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 d^2 \sqrt{a e^2-b d e+c d^2}}+\frac{e \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 \sqrt{a} d^2}-\frac{\sqrt{a+b x^2+c x^4}}{2 a d x^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-Sqrt[a + b*x^2 + c*x^4]/(2*a*d*x^2) + (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*a^(3/
2)*d) + (e*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*Sqrt[a]*d^2) + (e^2*ArcTanh[(b*d - 2
*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2*Sqrt[c*d^2 - b*d*e
+ a*e^2])

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 960

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] &&
ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rule 730

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)
*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[(2*c*d - b*e)/(2*(c*d^2 - b*d*e + a*e
^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c,
 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m + 2*p + 3, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^3 \left (d+e x^2\right ) \sqrt{a+b x^2+c x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{x^2 (d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{1}{d x^2 \sqrt{a+b x+c x^2}}-\frac{e}{d^2 x \sqrt{a+b x+c x^2}}+\frac{e^2}{d^2 (d+e x) \sqrt{a+b x+c x^2}}\right ) \, dx,x,x^2\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 d}-\frac{e \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 d^2}+\frac{e^2 \operatorname{Subst}\left (\int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 d^2}\\ &=-\frac{\sqrt{a+b x^2+c x^4}}{2 a d x^2}-\frac{b \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 a d}+\frac{e \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x^2}{\sqrt{a+b x^2+c x^4}}\right )}{d^2}-\frac{e^2 \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x^2}{\sqrt{a+b x^2+c x^4}}\right )}{d^2}\\ &=-\frac{\sqrt{a+b x^2+c x^4}}{2 a d x^2}+\frac{e \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 \sqrt{a} d^2}+\frac{e^2 \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x^2}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x^2+c x^4}}\right )}{2 d^2 \sqrt{c d^2-b d e+a e^2}}+\frac{b \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x^2}{\sqrt{a+b x^2+c x^4}}\right )}{2 a d}\\ &=-\frac{\sqrt{a+b x^2+c x^4}}{2 a d x^2}+\frac{b \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{4 a^{3/2} d}+\frac{e \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 \sqrt{a} d^2}+\frac{e^2 \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x^2}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x^2+c x^4}}\right )}{2 d^2 \sqrt{c d^2-b d e+a e^2}}\\ \end{align*}

Mathematica [A]  time = 0.269728, size = 176, normalized size = 0.81 \[ \frac{\frac{x^2 (2 a e+b d) \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{a^{3/2}}+\frac{2 e^2 x^2 \tanh ^{-1}\left (\frac{-2 a e+b d-b e x^2+2 c d x^2}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{\sqrt{a e^2-b d e+c d^2}}-\frac{2 d \sqrt{a+b x^2+c x^4}}{a}}{4 d^2 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

((-2*d*Sqrt[a + b*x^2 + c*x^4])/a + ((b*d + 2*a*e)*x^2*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4
])])/a^(3/2) + (2*e^2*x^2*ArcTanh[(b*d - 2*a*e + 2*c*d*x^2 - b*e*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a +
b*x^2 + c*x^4])])/Sqrt[c*d^2 - b*d*e + a*e^2])/(4*d^2*x^2)

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 276, normalized size = 1.3 \begin{align*}{\frac{e}{2\,{d}^{2}}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+b{x}^{2}+2\,\sqrt{a}\sqrt{c{x}^{4}+b{x}^{2}+a} \right ) } \right ){\frac{1}{\sqrt{a}}}}-{\frac{1}{2\,ad{x}^{2}}\sqrt{c{x}^{4}+b{x}^{2}+a}}+{\frac{b}{4\,d}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+b{x}^{2}+2\,\sqrt{a}\sqrt{c{x}^{4}+b{x}^{2}+a} \right ) } \right ){a}^{-{\frac{3}{2}}}}-{\frac{e}{2\,{d}^{2}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}+{\frac{be-2\,cd}{e} \left ({x}^{2}+{\frac{d}{e}} \right ) }+2\,\sqrt{{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}}\sqrt{c \left ({x}^{2}+{\frac{d}{e}} \right ) ^{2}+{\frac{be-2\,cd}{e} \left ({x}^{2}+{\frac{d}{e}} \right ) }+{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}} \right ) \left ({x}^{2}+{\frac{d}{e}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

1/2/d^2*e/a^(1/2)*ln((2*a+b*x^2+2*a^(1/2)*(c*x^4+b*x^2+a)^(1/2))/x^2)-1/2*(c*x^4+b*x^2+a)^(1/2)/a/d/x^2+1/4/d*
b/a^(3/2)*ln((2*a+b*x^2+2*a^(1/2)*(c*x^4+b*x^2+a)^(1/2))/x^2)-1/2*e/d^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*
(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e
*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{4} + b x^{2} + a}{\left (e x^{2} + d\right )} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^4 + b*x^2 + a)*(e*x^2 + d)*x^3), x)

________________________________________________________________________________________

Fricas [A]  time = 6.49643, size = 3019, normalized size = 13.85 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(2*sqrt(c*d^2 - b*d*e + a*e^2)*a^2*e^2*x^2*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*
d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2 + 4*sqrt(c*x^4 + b*x
^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2)) + (b*c*d^3
 - a*b*d*e^2 + 2*a^2*e^3 - (b^2 - 2*a*c)*d^2*e)*sqrt(a)*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 + 4*sqrt(c*x^4
 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x^4) - 4*(a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*sqrt(c*x^4 + b*x^2 + a
))/((a^2*c*d^4 - a^2*b*d^3*e + a^3*d^2*e^2)*x^2), 1/8*(4*sqrt(-c*d^2 + b*d*e - a*e^2)*a^2*e^2*x^2*arctan(-1/2*
sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e + a
*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) + (b*c*d^3 - a*b*d*e^2 + 2*a^2
*e^3 - (b^2 - 2*a*c)*d^2*e)*sqrt(a)*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2
 + 2*a)*sqrt(a) + 8*a^2)/x^4) - 4*(a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*sqrt(c*x^4 + b*x^2 + a))/((a^2*c*d^4 - a^2
*b*d^3*e + a^3*d^2*e^2)*x^2), 1/4*(sqrt(c*d^2 - b*d*e + a*e^2)*a^2*e^2*x^2*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2
 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*
e)*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2
*d*e*x^2 + d^2)) - (b*c*d^3 - a*b*d*e^2 + 2*a^2*e^3 - (b^2 - 2*a*c)*d^2*e)*sqrt(-a)*x^2*arctan(1/2*sqrt(c*x^4
+ b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) - 2*(a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*sqrt(c*x^
4 + b*x^2 + a))/((a^2*c*d^4 - a^2*b*d^3*e + a^3*d^2*e^2)*x^2), 1/4*(2*sqrt(-c*d^2 + b*d*e - a*e^2)*a^2*e^2*x^2
*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2
- b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) - (b*c*d^3 - a*b*
d*e^2 + 2*a^2*e^3 - (b^2 - 2*a*c)*d^2*e)*sqrt(-a)*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a
)/(a*c*x^4 + a*b*x^2 + a^2)) - 2*(a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*sqrt(c*x^4 + b*x^2 + a))/((a^2*c*d^4 - a^2*
b*d^3*e + a^3*d^2*e^2)*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \left (d + e x^{2}\right ) \sqrt{a + b x^{2} + c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(e*x**2+d)/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(1/(x**3*(d + e*x**2)*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{4} + b x^{2} + a}{\left (e x^{2} + d\right )} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^4 + b*x^2 + a)*(e*x^2 + d)*x^3), x)